
1

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name
Software engineering [S1Bioinf1>IO]

Course
Field of study
Bioinformatics

Year/Semester
3/5

Area of study (specialization)
–

Profile of study
general academic

Level of study
first-cycle

Course offered in
polish

Form of study
full-time

Requirements
compulsory

Number of hours
Lecture
15

Laboratory classes
30

Other (e.g. online)
0

Tutorials
0

Projects/seminars
0

Number of credit points
4,00

Coordinators
dr hab. inż. Mirosław Ochodek
miroslaw.ochodek@put.poznan.pl
dr hab. inż. Piotr Zielniewicz
piotr.zielniewicz@put.poznan.pl

Lecturers

Prerequisites
The student starting this course should have basic knowledge of the fundamental of programming, tools 
used in computer science, algorithms and data structures, object-oriented programming. In addition, s/he 
should have the ability to solve basic problems in the field of programming and the ability to obtain 
information from the indicated sources.

Course objective
1) Provide students with basic knowledge of software engineering regarding: managing software projects, 
defining requirements, system modeling, software design, quality assurance (including software testing), 
software development support tools (including version control tools) 2) Developing students" skills in 
solving simple problems in the field of design, construction and testing of software, the use of software 
support tools, modifying and using programming components. 3) Developing students" skills so they can 
fulfill the roles of analysts / designers / programmers in a sofwtare development teams (also using agile 
methodologies).



2

Course-related learning outcomes
Knowledge:
1. Has a basic knowledge regarding IT project management.
2. Has basic knowledge of requirements engineering (functional requirements, use cases, non-functional
requirements).
3. Has basic knowledge of modeling and software design.
4. Has a basic knowledge of software verification and validation methods.

Skills:
1. Is able to specify functional and non-functional requirements.
2. Is able to create a prototype of an application user interface.
3. Is able to create object models in the UML notation (classes, state machine, sequence).
4. Is able to create test cases and automate them (unit tests).
5. Is able to organize work in a software development team.
6. Is able to use the integrated programming environment.

Social competences:
1. Is able to interact and work in a software development team.

Methods for verifying learning outcomes and assessment criteria
Learning outcomes presented above are verified as follows:
Learning outcomes presented above are verified as follows:
Forming Assessment:
a) lectures: on the basis of answers to questions and participation in quizzes during the classes
b) laboratory: based on the evaluation of the progress in the implementation of tasks during the classes
Summative assessment:
In terms of the assessment of the learning outcomes concerning the acquired skills and social
competences (mainly the assessment of laboratory classes):
a) the final grade consists of two components: the evaluation of a mini-project implementation (50%)
and a test (50%). The test consists of both test questions (multiple choice) and open-ended tasks
(developing a UML diagram, writing a code fragment for unit testing).
In terms of learning outcomes related to the acquired knowledge:
a) during the lectures, students solve quizzes and short problem tasks. For providing an acceptable
solution (depending on its form and nature), a student receives 1%.
b) multiple choice test including single-choice questions (one correct answer) and questions with
possibly one or more correct answers (the question type is explicitly indicated in the test). The student
receives 1 point for answering the question correctly. Points are converted to a percentage scale.
Based on the percentage points obtained (from the election test and during the lecture), the final grade
is determined according to the scale:
- >= 90% - 5,0
- <80%, 90%) - 4,5
- <70%, 80%) - 4,0
- <60%, 70%) - 3,5
- <50%, 60%) - 3,0
- mniej niż 50% - 2,0

Programme content
The course program covers the following topics:
- Introduction to software engineering and the course, including the discussion of importance and role
of software development in the modern world, vision of an IT project, consequences of software
failures, the scope of software engineering
- Version management systems (Git)
- Functional and non-functional requirements and business process modeling
- Software modeling and analysis (including UML notation)
- Software prototyping
- Software design
- Project management methodologies (Scrum)
- Software testing (unit and acceptance)



3

The laboratory program covers the following topics:
- Software configuration management tools (Git)
- User interface prototyping
- Documenting requirements (use cases, user stories)
- Modeling of systems in the UML notation
- Software testing - unit testing
- Practical implementation of a mini-project
- Project patterns

Teaching methods
Teaching methods include:
a) lecture: multimedia presentation, presentation illustrated with examples given on the board, solving
problems, case studies.
b) laboratory exercises: problem solving, practical exercises, discussion, team work, multimedia show,
workshops, demonstration and implementation of a mini-project.

Bibliography
Basic
1. I. Sommerville, Inżynieria oprogramowania, Wydawnictwo Naukowe PWN, 2020
2. A. Jaszkiewicz, Inżynieria oprogramowania, Helion, 1997.
3. K. Schwaber, J. Sutherland, The Scrum Guide: Przewodnik po Scrumie: Reguły Gry,
http://www.scrumguides.org, (dostępny online), 2017.
Additional
1. Wzorce projektowe w języku Java: https://www.tutorialspoint.com/design_pattern
2. Kopczyńska, Sylwia, Jerzy Nawrocki, and Mirosław Ochodek. An Empirical Study on Catalog of Non-
functional Requirement Templates: Usefulness and Maintenance Issues. Information and Software
Technology (2018).
3. Nawrocki, Jerzy, et al. Agile requirements engineering: A research perspective. International
Conference on Current Trends in Theory and Practice of Informatics. Springer, Cham, 2014.

Breakdown of average student's workload

Hours ECTS

Total workload 100 4,00

Classes requiring direct contact with the teacher 45 2,00

Student's own work (literature studies, preparation for laboratory classes/
tutorials, preparation for tests/exam, project preparation)

55 2,00


